
DOI: 10.29026/oea.2021.210048

Flexible SERS substrates for hazardous materials
detection: recent advances
Moram Sree Satya Bharati and Venugopal Rao Soma*

This article reviews the most recent advances in the development of flexible substrates used as surface-enhanced Ra-
man  scattering  (SERS)  platforms  for  detecting  several  hazardous  materials  (e.g.,  explosives,  pesticides,  drugs,  and
dyes).  Different  flexible  platforms  such  as  papers/filter  papers,  fabrics,  polymer  nanofibers,  and  cellulose  fibers  have
been investigated over the last few years and their SERS efficacies have been evaluated. We start with an introduction of
the importance of hazardous materials trace detection followed by a summary of different SERS methodologies with par-
ticular attention on flexible substrates and their advantages over the nanostructures and nanoparticle-based solid/hybrid
substrates. The potential of flexible SERS substrates, in conjunction with a simple portable Raman spectrometer, is the
power to enable practical/on-field/point of interest applications primarily because of their low-cost and easy sampling.
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Introduction
In the present-day scenario, human health, and environ-
mental safety are the foremost concerns worldwide. Haz-
ardous materials are referred to as those which have been
determined to be capable of presenting an unreasonable
risk  to  human  health,  safety,  and  property.  The  main
characteristics of  these  materials  are  ignitability,  corros-
ivity,  reactivity,  or  toxicity.  The  specific  categories
among these materials are explosives, flammable liquids,
gases, oxidizers,  corrosives,  flammable  solids,  radioact-
ive materials,  poisonous/infectious substances,  and dan-
gerous  substances.  We  start  with  a  short  overview  of
various hazardous  materials  followed  by  the  introduc-
tion of Raman spectroscopy and surface enhanced Rama
spectroscopy/scattering  (SERS)  techniques.  This  review
aims  to  report  on  the  detection  of  hazardous  materials
such as explosives, pesticides, and simulants of chemical
warfare agents using flexible SERS substrates. 

Hazardous materials
Explosives/high energy materials  (HEMs) are  those  ma-
terials  that  contain  nitro  groups  (which  are  energetic)
and release  an enormous amount  of  energy in  the  form
of light and heat when they are subjected to an external
stimulus such as (a) spark (b) shock or even (c) friction.
Explosives  are  commonly  categorized  as  primary  and
secondary depending on their detonation (velocity, pres-
sure etc.)  and sensitivity parameters.  Primary explosives
are  extremely  sensitive  and  release  enormous  energy
even  with  a  small  perturbation  such  as  shock/collision.
Therefore, the difficulty is generally high while handling
the primary explosives. They act as boosters or initiators
for  detonating  secondary  explosives.  Lead  azide  and
mercury fulminate are a few examples of primary explos-
ives,  while  1,3,5,7-Tetranitro-1,3,5,7-  tetrazocane
(HMX),  1,3,5-Trinitroperhydro-1,3,5-triazine  (RDX),
trinitrotoluene  (TNT),  etc.  are  representative  of 
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secondary explosives secondary explosives secondary ex-
plosives  seconda.  Interestingly,  there  are  few home-pre-
pared explosives  utilized  in  the  preparation  of  impro-
vised explosive devices (IEDs). These are now easily syn-
thesized  at  the  laboratory  level  from  simple  molecules
such as ammonium nitrate (AN), dinitrotoluene (DNT),
picric  acid  (PA),  etc..  Pesticides  are  the  chemicals  used
by  farmers/transporters  to  protect  the  crops/vegetables/
fruits from  insects/pests/rodents.  The  overused  pesti-
cides  will  remain  as  residues  in  the  food,  which  may
cause  risk  to  human  health  (cancer/allergies/intoxica-
tions)  and  the  ecosystem  (surface  water/soil)2. Mala-
thion, Carbofuran, methyl parathion, Carbaryl, etc., are a
few examples  of  various  pesticides available  in  the  mar-
ket.  For  example,  thiram  is  the most  used  pesticide,
which averts fungal diseases, but it causes damage to the
skin and is very harmful to the health. Chemical warfare
agents (CWAs)3,4 are the chemical weapons used in a ter-
rorist attacks,  which  are  an  intensified  threat  to  the  en-
vironment and  civilian  population.  The  principal  com-
pounds  are  mustard,  lewisite,  G-series  nerve  agents
[Tabun  (GA);  Sarin  (GB);  Soman  (GD)],  and  V-series
nerve  agents  [O-ethyl  S-(2-diisopropylaminoethyl)
methylphosphonothioate  (VX)].  Sarin  was  used  as  a
chemical weapon  by  terrorists  in  the  1995  exposure  in-
cident  in  the  Tokyo  subway  system  wherein  more  than
1000  people  were  affected.  At  room  temperature,  these
are  volatile  liquids  that  cause  a  serious  risk  (paralysis,
loss of consciousness,  depression of the central  respirat-
ory  drive)  from  exposure  (dermal  contact  with  a  liquid
nerve  agent).  Inhalation  of  the  low  vapor  nerve  agent
even for a few minutes (for e.g., ~10 min) causes the con-
traction  of  the  pupils  of  the  eye,  tightness  of  the  chest,
headache,  rhinorrhea,  etc3.  These  are  extremely  toxic,
and  their  usage  is  restricted  in  non-surety  laboratories
because  of  the  risk  in  exposure  assessments.  Chemical
warfare agent simulants are recently developed, and they
mimic the actual CWAs carrying all the relevant chemic-
al  and  physical  properties  without  accompanying  their
toxicological  properties.  Vinod  Kumar  et  al5.  reported
the development of CWAs, their toxicity, and first usage
as weapons  worldwide.  He  discussed  the  different  prin-
ciples and  chemical  sensing  methods  of  CWAs  and  de-
velopments  in  chromo-fluorogenic  sensing  techniques.
Most  of  the CWA simulants  are  odorless,  colorless,  and
tasteless. Distilled mustard (HD- C4H8Cl2S), methyl sali-
cylate  (MS-  C8H8O3),  2-Chloroethyl  methyl  sulphide
(CEMS-  C3H7ClS),  etc.  are  the  surrogate  simulants  of

mustard CWA. Dimethyl methylphosphonate (DMMP),
di-ethyl methylphosphonate  (DEMP),  di-ethyl  ethyl-
phosphonate  (DEEP),  Diisopropyl  methylphosphonate
(DIMP),  etc.  are  the  simulants  of  G-Agent.  [G-Agent
named because these are first secretly synthesized by the
German  Ministry  of  Defense  before  and  during  World
War II-1936] Amiton (VG), S-diethyl phenylphosphono-
thioate (DEPP), Malathion, parathion, etc. are simulants
of VX agent.

Therefore, rapid  and  reliable  detection  of  these  haz-
ardous molecules is the primary concern of both govern-
mental  agencies  and  research  community  to  reduce  the
risk  to  society.  Razdan  and  co-workers6 have  recently
provided  a  comprehensive  review  on  the  laser  based
standoff  detection  of  CWA.  In  this  review,  they  clearly
tabulated  the  classification,  toxicity  (lethal  dose),  and
other important  properties  of  the CWA. The significant
global  research  progress  in  the  laser-based  sensors  such
as  Raman  sensors  and  DIAL  [differential  absorption
LIDAR (light detection and ranging)] sensors in the de-
tection  of  CWA.  There  exists  a  variety  of  analytical
methods (reported in the literature)  for  the detection of
such hazardous materials  either in residue/bulk form or
in concealed places. Some of the tested and mature tech-
niques include  ion-mobility  spectroscopy  (IMS),  tera-
hertz  (THz)  spectroscopy,  laser-induced  breakdown
spectroscopy  (LIBS),  Raman  spectroscopy  and  variants,
photo-acoustic, and gas chromatography, etc7−14. Some of
these  techniques  either  cause  partial  sample  destruction
or  require  isolation  of  sample,  which  is  very  difficult  in
the case of traces. Additionally, a few of these techniques
do not  favor  the  usage  of  low  quantity  samples  and  re-
quire  a  skilled  person  for  instrument  calibration  and
measurements.  Furthermore,  high  water  absorption,
poor  specificity,  and  difficulty  in  instrumentation  limit
the  usage  of  these  techniques  for  on-field  explosive
detection15,16. 

Raman spectroscopy and variants
Raman  spectroscopy  is  a  simple,  rapid,  and  a  non-de-
structive spectroscopic technique based on molecular vi-
brations as  signatures  in  the  spectra.  The  Raman  spec-
trum of any analyte molecule provides specific informa-
tion  and  conveys  chemical/structural  information.  This
is  important  in  the  case  of  explosives  (in  pure  form  or
even  in  the  mixture  form)  irrespective  of  solid,  liquid,
powder, or gas state17−22. However, Raman scattering is a
very  weak  process  and,  consequently,  requires  either
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large quantities of the analyte or high input laser powers
to obtain the molecular signatures. Surface-enhanced Ra-
man scattering is one of the advanced and developed Ra-
man  techniques  for  overcoming  these  limitations  (in-
trinsically low Raman signal intensity for low concentra-
tion of the analyte molecules)1. This is based on the huge
electric field enhancements in the vicinity of  nanostruc-
tured metals resulting in a strong Raman signal.

In the present times, flexible SERS substrates have re-
ceived great interest due to them possessing the advant-
ages of (a) easy sampling by swabbing/wrapping directly
on  any  curved/rough  surfaces  (b)  large  scalability  by
printing/roll  to  roll  manufacturing/electrospinning  etc.
and (c) low overall cost of the sensing system. The devel-
opment of  handy  flexible  substrates  with  compact  Ra-
man devices/smart-phones  can  possibly  provide  port-
able sensors in real-world sensing/safety applications and
serve  as  a  powerful  analytical  tool  for  on-field  analysis.
For example, the possibility of detection of ultralow con-
centrations  [picomolar  (10−12 M  or  pM)  to  femtomolar
(10−15 M or fM)] of two nerve gases, VX and Tabun was
reported  recently  by  Hakonen  et  al23.  using  flexible  Au
covered Si  nanopillars  (SERS  substrates)  and,  signific-
antly, using  a  handheld  Raman  spectrometer.  Further-
more, the time involved in a typical detection can be re-
duced to practically acceptable levels (<5 sec) using these
portable and low-cost disposable SERS substrates. 

Surface-enhanced Raman scattering
(SERS)
Martin Fleischmann and co-workers had reported a for-
tunate discovery  way  back  in  1974,  in  which  they  ob-
served  enhanced  Raman  signals  of  a  pyridine  molecule
adsorbed on  an  electrochemically  roughened  silver  sur-
face24.  They  reported  the  enhancement  in  the  Raman
cross-section  of  pyridine  vibrations  by  a  factor  of  ~106.
This enhancement of the Raman signal in the vicinity of
the  metal  nanostructure  was  named  “surface-enhanced
Raman  scattering. ”  In  the  year  1977,  Van  Duyne25 and
Albrecht26 groups separately explained the mechanism of
enhanced Raman signals from the metal surface. In 1985,
Moskovits  et  al27.  reported  all  the  primary  explanations
for the  enhancement  mechanisms  such  as  (a)  electro-
magnetic (EM) enhancement and (b) chemical (CM) en-
hancement. The  long-range  EM  enhancement  is  attrib-
uted to  the  so-called  localized  surface  plasmon  reson-
ance (LSPR) in the near-field metallic surface. The inter-
action of  the incident EM field with metal  NPs possess-

ing  negative  real  and  small  positive  imaginary  (absorp-
tion) dielectric  constant  induces  a  collective  and  coher-
ent electron oscillations,  called plasmons,  in the vicinity
of the NP or nanostructure (NS). The interaction of elec-
tromagnetic (EM) fields with the NPs affect their optical
properties  which  are  prevailed  by  the  material’s dielec-
tric  constant  at  the  excitation  wavelength  and  also  the
surrounding media.  The  plasmonic  noble-metal  materi-
als (mainly  Au  and  Ag)  exhibits  high  SERS  activity  be-
cause of their LSPR in the visible region, and the materi-
als  such  as  aluminum  (Al),  gallium  (Ga),  platinum  (Pt)
palladium (Pd), titanium (Ti), bismuth (Bi), indium (In),
rhodium (Rh), and ruthenium (Ru), etc. exhibit the plas-
monic  resonance  in  the  deep  ultraviolet  (UV)  region28.
Several  review articles  presented  throughout  this  review
discussed  the  significance  of  various  optical  materials
used in SERS studies. The short-range CM enhancement
is  due  to  the  charge  transfer  mechanism  between  the
analyte  molecule  and  the  substrate29.  Noble-metal-free
SERS  materials,  for  example  semiconductors  (Si,  GaAs
and etc.) and two-dimensional (2D) layered materials30,31

(MoS2, graphene,  HBN  and  etc.)  exhibit  the  CM  en-
hancement. Usually, Raman signals of the molecules can
be enhanced by 104 to 1010 times because of the large EM
enhancements supported and provided by the plasmon-
ic  nanostructures  in  close  proximity  (~1  nm).  The  CM
enhancement is at least 2-3 orders of magnitude less than
that  of  EM  enhancement.  During  the  last  two  decades,
several  scientists  have  extensively  studied  the  effective
parameters  influencing  the  enhancement  of  the  SERS
signal32,33.  Enhancements in the Raman signal  is  a  result
of several contributions and it is virtually difficult to sep-
arate them into  distinct  components.  Several  factors  in-
cluding the platform, SERS active material, analyte prop-
erties,  excitation laser  mainly  affect  the  enhancement  of
the Raman signals and are illustrated and explained as a
schematic in Fig. 1. 

Reviews on different SERS studies
A variety of review reports on SERS have been published
over  the  last  decades  addressing  the  issues  concerned
with fabrication  techniques,  applications,  and  their  de-
velopments.  For  example,  Fan et  al34. reviewed the  vari-
ous fabrication  studies  of  SERS  substrates  such  as  elec-
tron-beam lithography,  focused ion beam (FIB) milling,
and  also  template-based  techniques.  The  advantage  of
these  nanostructured  substrates  is  the  fine  control  over
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the nanostructured  geometries,  which  provide  high  re-
producibility in  the  intensity  of  SERS  signals.  They  dis-
cussed  the  application  of  those  solid  SERS  substrates  in
biosensing,  environmental, and  optical  fiber  sensing.
Mahadeva et al.35, in the year 2015, reviewed the applica-
tions of paper as sensors in different fields like electronic
devices,  biosensors,  strain  sensors,  gas  sensors,  and
piezoelectric  devices.  Further,  their  limitations  in  the
commercialization  of  these  devices  were  also  discussed.
Muehlethaler  et  al20.  summarized  (in  the  year  2016)  the
forensic applications of SERS in the detection of explos-
ive  vapors,  CWA  simulant,  fire  accelerants,  gunshot
residues, etc. Mosier-Boss et al18. reviewed the properties
of  metallic  SERS  substrates  and  their  usage  towards  the
detection of various molecules such as drugs,  pesticides,
explosives, BTEX  (benzene,  toluene,  ethylbenzene,  xy-
lenes), dyes,  cations,  and  anions.  Furthermore,  they  ad-
dressed the  usage  of  commercially  available  SERS  sub-
strates.  Restaino et  al36. (2018) reviewed the point of  in-
terest  sample  detection  using  flexible  and  porous  SERS
substrates. They  described  the  various  fabrication  tech-
niques  with  different  sample  collection  methods  and
highlighted  the  unprecedented  ease  of  use  of  the  paper
sensors.  Senthamizhan  et  al37. reviewed  the  develop-
ments of the different electrospun nanofibers (metal ox-
ide nanofiber, composite fibers) and their use as glucose
sensors  in  the  year  2016.  Hakonen  et  al38.  reviewed  (in
the  year  2015)  the  trends  and  perspectives  of  the  SERS
substrates  in  the  detection  of  explosives  and  chemical
warfare agents. Ogundare et al39. reviewed extensively the
cellulose-based SERS  platforms  including  their  funda-

mentals,  fabrication  approaches,  and  application  in  the
detection of various probe molecules. Recently, Maddip-
atla  et  al40. reviewed  the  recent  approaches  and  the  fu-
ture opportunities in the development of flexible sensors
in  the  food,  environmental,  and  defense  fields.  Sun  et
al19. reviewed the on-site application of SERS by the com-
bined portable  Raman  spectrometer  and  SERS  sub-
strates (the year 2020). The choice of an appropriate sub-
strate  is  extremely  essential  in  the  SERS  measurements.
The requirements of an ideal SERS substrate for practic-
al  applications  are  a)  sensitivity  (able  to  detect  very  low
concentrations  of  analyte  molecules),  b)  uniformity
(similar  SERS  signal  strength  over  the  entire  substrate),
c) reproducibility (similar data should be obtained from
measurements  spanning  different  batches,  time  periods
etc.),  d)  recyclability  (should  be  able  to  detect  different
analyte  molecules  with  a  single  substrates  by  simple
cleaning  and  to  reduce  the  cost  of  SERS  substrates),  e)
stability  (SERS  signal  should  not  fall  drastically  over  a
period of few weeks, at least), f) flexibility (should be able
to  collect  samples  from  uneven  surfaces),  as  well  as  g)
low fabrication cost (ideally SERS substrates should cost
less  since  the  Raman  spectrometer  cost  is  very  high).  A
schematic of key points of SERS substrates requirements
is  illustrated  clearly  in  the Fig. 2.  Each  of  these  factors
and their  significance are  discussed in detail  in  the next
section.

Sensitivity is  the  biggest  virtue  of  a  good  SERS  sub-
strate is the detection of molecules at very low concentra-
tions [traces meaning parts per billion (ppb) or parts per
trillion  (ppt)  or  parts  per  quadrillion  (ppq)].  The
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sensitivity  is  generally  expressed  in  terms  of  the  lowest
quantity of probe molecule detection possible with a giv-
en  SERS  substrate.  The  Raman  signal  disappears  when
the  molecule  concentrations  reach  a  limit  value.  The
sensitivity of the SERS substrate varies from molecule to
molecule. The  sensitivity  of  the  SERS substrate  is  typic-
ally represented by the enhancement factor (limit of de-
tection for a particular vibration mode of the probe mo-
lecule). Therefore, one should be judicious with the SERS
substrate  and  select  one  with  a  higher  enhancement
factor  or  a  lower  limit  of  detection  (LOD)  over  a  wide
range of  analytes.  Reproducibility  is  related  to  the  vari-
ation  of  SERS  intensity  of  the  probe  molecule  over  the
NS  surface.  The  smaller  the  variation  in  the  signal,  the
higher the reproducibility and it is generally reported in
terms  of  RSD  (relative  standard  deviation)  of  the  SERS
signal. This  depends  mainly  on  the  distribution  of  hot-
spots  on the substrate.  Low reproducibility  of  any SERS
substrate affects  the potential  usage in practical  applica-
tions. It is highly challenging to produce a highly repro-
ducible SERS platform along with a homogeneous distri-
bution of  hotspots.  The fluctuations of  the SERS signals
are  calculated  statistically  with  RSD  of  the  particular
mode intensity in the SERS spectrum. The magnitude of
%RSD, indicative of the coefficient of variation, provides
uncertainty in  the  measurement.  Lower  RSD  values  in-
dicate  a  superior  substrate  in  terms  of  reproducibility.
Recyclability  is  another  essential  factor  to  test  the  usage
of the same SERS substrate  after  detecting one/two mo-
lecules  followed  by  proper  cleaning  procedures41.  Xu  et
al42.  developed  recyclable  hedgehog-shaped  CuO

NWs/Cu2O hetero  NSs  (with  Ag  coating)  as  SERS  sub-
strates. These hetero NS have demonstrated strong SERS
activity (85% retained after 7 cycles of usage) driven by a
broad band visible-light photocatalytic degradation pro-
cess. Ag/CuO NWs/Cu2O composites were fabricated by
ns  laser  ablation  and  subsequent  thermal  oxidation  on
the Cu sheet to develop Cu NWs on the grooved surface
which was subsequently followed by Ag NPs deposition.
The recyclability measurements were performed with the
MG  molecule  by  demonstrating  seven-times  consistent
SERS performance. Stability is related to the variation of
the  sensitivity  of  SERS  substrate  with  respect  to  time.
This  aging effect  for  the  SERS substrates  is  also another
important  factor  for  storage  in  air/vacuum  for
days/months/year and their performance afterwards.  Fi-
nally, the  fabrication  cost  of  the  substrates  is  very  im-
portant  for  the  bulk  production  and  commercialization
of  substrates  for  regular  usage.  Despite  the  long  history
of SERS, flexibility garnered much interest only recently
because of  easy  sample  collection from any uneven sur-
face by  simple  swabbing/swiping  etc.  Producing  uni-
form,  stable,  and  highly  sensitive  SERS  substrates  has
been a  major  obstacle  for  real-field  applications.  There-
fore, the main task for the SERS community has been to
develop the substrates with high sensitivity/reproducibil-
ity, long stability, low cost, and easy to handle, as well as
flexible for sample collection.

The  important  results  from the  literature  survey  over
the last 5−10 years concerning the usage of flexible SERS
substrate  for  various  hazardous  materials  detection  is
also  summarized  in  this  article.  A  large  number  of
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papers have been published in this area. To demonstrate
the  magnitude  of  research,  a  simple  search  for  papers
published in the journals and conferences, including the
title/keywords/abstract “flexible  Surface  Enhanced  Ra-
man Spectroscopy ”  or  “flexible  Surface  Enhanced  Ra-
man  Scattering ”  or  “flexible  SERS ”  as  indexed  by  the
Scopus  search  engine,  resulted  in  typically  >100  papers
in  2019,  >100  papers  in  2020  and  >40  in  the  year  2021
alone.  The  corresponding  data  obtained  is  plotted  as  a
bar graph and is shown in Fig. 3. The identification of all
the  developments  and  practical  applications  of  flexible
SERS  studies  in  various  fields  will  be  difficult  to  be
presented in  this  review.  Therefore,  we  have  acknow-
ledged  the  most  important  recent  review  articles  and
those are listed in the Table 1 below. The readers are sug-
gested to select and pursue the review based on their in-
terest(s). This review is limited to the recent studies (typ-
ically during  the  last  3−4  years)  on  flexible  SERS  sub-
strates  used  in  the  detection  of  hazardous  materials,
rather  than  including  broad  discussions  on  solid  SERS
substrates  (nanostructures  on  solid  targets  and  metal
NPs suspension on the solid platform) and their develop-

ments, which is a huge field. This review is warranted be-
cause of the extremely rapid developments in the area of
different nanomaterials synthesized (for SERS studies in-
cluding plasmonic and non-plasmonic), novel methodo-
logies developed for incorporating various nanoparticles
in  different  flexible  platforms,  and  detection  of  diverse
analyte molecules.
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Table 1 | Important review articles on various applications of SERS that have been reported in the last three-years (2019–2021).

 

S. No. Author Review topic Ref.

1 Zhang et al. Flexible SERS substrates and recent advances in food safety analysis ref.43

2 Yin et al. Recent process of 2D materials in SERS ref.30

3 Klapec et al.
2016–2019 published literature on the forensic related molecules and their various detection
techniques using SERS

ref.44

4 Li et al. Fabrication and applications of flexible, transparent SERS substrates ref.45

5 Forbes et al. Developed and challenges of SERS sensor in the detection of inorganic based explosives ref.46

6 Ji Sun et al.
SERS substrate developments and combination with other technologies in on-site analysis using
portable Raman spectrometer

ref.19

7 Jingjing et al. Different dimensional (0D, 1D, 2D and 3D) SERS substrates for explosive detection ref.47

8 Shvalya et al.
Plasmonic NPs and 3D plasmonic NSs sensors with biological, medical, military, and chemical
applications

ref.48

9 To et al. Explosive trace detection technologies and latest advances ref.49

10 Ren et al. Qualitative and quantitative analysis; strategies of practical application of SERS substrates ref.50

11 Huang et al. Paper SERS substrates in food safety ref.51

12 Chen et al. 2D SERS substrates in chemical and biosensing ref.52

13 Dinesh et al. Flexible sensor fabrication with various printing techniques ref.40

14 Xue et al. Flexible nanofiber-based substrates fabrication and application ref.53

15 Ogundare et al. Cellulose-based SERS substrates: fundamentals and principles ref.39

16 Zamora Sequeira et al. Various methods for the determination of pesticides ref.2

17 Piolt et al. Key aspects of SERS and application in the biomedical field ref.54

18 Ogundare et al. Cellulose substrate fundamental, preparation methods, and applications ref.39

19 Lee et al. Analyte manipulation and hybrid SERS platforms for real-world applications ref.55

20 Xu et al.
Latest advances of flexible SERS substrates in point of care diagnostic in tunable, sample
swapping and in-situ SERS detection highlights

ref.56

21 Zhang et al. Electrospinning NPs based material and their sensing application ref.57

22 Restaino et al. Plasmonic paper SERS substrates-preparation methods and sample collections ref.36
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Flexible SERS substrates
A forthright  method  to  achieve  the  SERS-active  sub-
strates is to dry the colloidal NPs (preferably plasmonic)
solution  on  any  of  the  glass/silicon/paper/metal
surfaces.1 Depending  on  the  platform  where  these
NPs/NSs are deposited, the SERS substrates can be classi-
fied as  either  rigid or  flexible.  Rigid SERS substrates  are
accomplished via deposition of colloidal solutions on the
surface of  the  glass  or  silicon  or  metal  sheet  and  pat-
terned  glass/silicon/metal  sheets  [e.g.,  metal-insulator-
metal  structures  Au-SiO2-Au59].  Alternatively,  flexible
SERS platforms can be achieved from the usage of cellu-
lose  papers,  textiles,  thin  films,  polymers,  adhesive
tapes60−64,  etc.  Both  rigid  and  flexible  SERS  substrates
have their exclusive advantages and disadvantages. Solid
SERS substrates  usually  display  better  recyclability,  sig-
nal  homogeneity,  and  higher  enhancement  factors.
However, the cost and sample collection have a consider-
able impact  on  daily  practical  usage  of  any  SERS  sub-
strate.  Apart  from  the  detection  of  molecules,  flexible
substrates  have  potential  in  several  applications  such  as
fabrication of electronic devices65 (diodes, transistors, en-
ergy  storage  devices,  etc.),  food  safety66, cancer  screen-
ing67,  and  pathogens  multiplex  detection68,  uric  acid  in

human tears69.
The  capabilities  of  flexible  SERS  substrates  have

gained tremendous research interest due to
• Inexpensive  fabrication  procedures  making  it  pos-

sible to prepare large area substrates.
•  Easy-to-use  nature  for  on-site  detection  of  a  wide

range of probe molecules.
• Flexibility  in  sample  collection,  i.e.,  possible  to  col-

lect the probe molecules/sample directly from any rough
surface  (e.g.,  suitcase,  bag,  table  surface,  fruit,  etc.)  with
the substrate by simple swabbing/swiping.

The  merits  of  the  SERS  technique  with  the  portable
Raman spectrometer now widely used in national secur-
ity, food safety, and environmental monitoring.

Recently explosives  detection was approached by fab-
ricating various flexible SERS substrates. Liyanage et al58.
synthesized  flexible  SERS  sensors  with  an  adhesive  film
(Scotch magic-tape)  loaded  with  Au  triangular  nano-
prisms by simple self-assembly method as shown in Fig.
4.  The  estimated  LOD  of  TNT,  RDX,  and  PETN  was
~900, ~50, and ~50 ppq (parts per quadrillion), respect-
ively.  Furthermore,  they  have  also  demonstrated  direct
sampling detection of TNT which was collected from fin-
gerprints  by  simple  swabbing  of  samples  which  were
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oprisms on adhesive tape. Figure reproduced with permission from ref.58, Royal Society of Chemistry.
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prepared by  placing  the  thumb onto  a  series  of  10  glass
slides.  And  they  successfully  proved  these  flexible  SERS
substrates have the stability with a “shelf life” of at least 5
months.  Gao et  al70.  synthesized light  trapping wrinkled
nanocones  (50−60  nm)  flexible  SERS  substrates  using
colloidal  (polystyrene  microspheres-1  μm)  lithography
and oxygen plasma etching (5 minutes) on polyethylene
terephthalate (PET) film followed by 30 nm gold film by
electron beam deposition. The optimized wrinkled nano-
cone 4-ATP labelled flexible substrate was used to detect
four  explosive  molecules  RDX,  HMX,  PETN,  and TNT.
The  TNT  residue  collection  and  SERS  spectra  of  TNT
residues from  the  cloth  bag  by  bended  to  brush  collec-
tion  is  followed  by  5  min  immersion  in  4-ATP-labelled
AgNPs. 

Paper-based SERS substrates
A detailed literature survey revealed that a variety of pa-
pers  were  used  (as  a  base  material)  for  preparing  the
SERS  substrates  such  as  filter  paper71,  chromatography
paper72,  A4  sized  paper73,  tissue  papers74,  and  different
GCM grade papers75. The porosity of the paper (which is
typically a few μm) will affect the retention of NPs on its
surface. There are numerous approaches for the fabrica-
tion  of  paper-based  SERS  substrates  reported  in  recent
literature  including  physical  vapor  deposition76,77, dip-
ping method67,71, in-situ growth of metal NPs78,79, hydro-
philic wells  by wax printing followed by drop-casting of
the  NPs80,  pen-on-paper  technique73,  inkjet  printing72,81,
etc.. Some of these techniques of the fabrication of paper
substrates, collated from a few recent research reports, is
illustrated  in Fig. 5. The  in-situ  synthesis  implies  soak-
ing  of  a  cellulose  paper  in  metal  salts  such  as
AgNO3/HAuCl4 in  conjunction  with  reducing  agents
(such  as  NaBH4/citric acid/Tollens  agent).  These  meth-
ods  later  require  additional  processing  such  as
heating/plasma  treatment/rinsing/cleaning.  Therefore,
these  synthesis  procedures  need  multiple  cycle
processes82−84.  Dip  coating  is  a  unpretentious  method in
which the NPs have to be first synthesized, then the NPs
are deposited on to the paper. However, the NPs loading
depends on the  absorbance and soaking time of  the  pa-
per (a  comprehensive  discussion  on  the  above  tech-
niques  is  provided  in  ref.1).  Several  recent  studies  have
demonstrated the  utility  of  different  approaches  for  im-
proving the loading [e.g., prior soaking of paper in NaCl,
Glycidyl-trimethyl-ammonium  chloride  (GTAC)]85,86.
The  advantage  of  dip  coating/immersion  method  is  its

ability  to  deposit  NPs  with  different  shapes,  sizes,  and
compositions on the paper87−89. Another popular fabrica-
tion  method  is  the  inkjet/screen  printing,  which  is  a
simple  method  of  deposition  of  NPs  on  paper  using  a
commercial  desktop  inkjet  printer.  The  efficacy  of  the
SERS  substrate  depends  on  the  designing  of  substrate
patterns,  which  is  to  preserve  the  viscosity  and  surface
tension  of  the  NPs  ink,  and  printing  cycles  to  upsurge
the  density  of  NPs.  Inkjet  printing  offers  easy-to-design
complex geometries using a personal computer and it  is
feasible to print already prepared NPs (by laser-based or
chemical  methods)  and in-situ  synthesis  is  also  possible
by loading  precursor  agents  in  different  color  ink  cart-
ridges90. Furthermore, to improve the SERS substrate ef-
ficiency and to avoid unwanted spreading of NPs, hydro-
phobic  modification  of  paper  has  been  exploited  before
the printing of NPs91.

Kim et al92. used a silicon rubber mask (3 mm diamet-
er and 1 mm thickness) to construct SERS sensor arrays.
Gold nanorods  (AuNR,  L/D:  44±2/10±1  nm)  were  dis-
persed on  top  of  RC  cellulose  with  vacuum-assisted  fil-
tration method on each well  on RC hydrogel.  The SERS
activity  and  these  AuNR  array  film  was  examined  as  a
function of the AuNRs volume (8, 10, 12 and 14 μL) and
different  drying  times  (1,2,  3  and  24  hours),  and  better
SERS activity is noticed for 12 μL with increasing drying
time.  These  SERS  arry  demonstrated  the  simultaneous
detection  of  multiple  hazardous  chemicals  such  as  R6G
(10 pM),  RB,  CV,  4-ATP,  BPE,  thiram  (100  fM),  tri-
cyclazole,  difenoconazole,  and  mancozeb.  And  the
Multi-SERS  spectra  of  thiram  are  recorded  from  each
AuNR array on RC film. [i) 10 μM; ii) 1 μM; iii) 100 nM;
iv) 10 nM; v) 1 nM]. And also,  bending cycle tests were
conducted for 500 times. These results show good sensit-
ivity, stability and repeatability of low-cost flexible SERS
substrates.  Li  Xian  et  al93. fabricated  cellulose  nanocrys-
tal-Ag NPs  embedded filter  paper  SERS substrate  via  in
situ  reduction.  These  CNC –Ag  paper  substrates  were
modified  by  soaking  in  dodecyl  mercaptan  at  different
concentrations  ranging  from  10−4 to  10−18 g/mL.  The
concentration was  optimized as  10−12 g/mL by perform-
ing  contact  angle  and  SERS  measurements.  Finally,  the
optimized SERS substrate was used to detect  phenyleth-
anolamine  A  and  metronidazole  with  a  LOD  of  5  nM
and 200 nM. Lan et  al74. reported the  inkjet-printed pa-
per-based  semiconducting  (MoO3−x)  SERS substrates  to
detect CV and MG on the fish surface by swabbing. Pre-
viously, our group presented a systematic study94 on the
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fabrication of  versatile  low-cost  FP  flexible  SERS  sub-
strates  loaded with  salt-induced aggregated  Ag/Au NPs.
The  SERS  substrates  were  subsequently  prepared  by
soaking the FP in aggregated NPs by simple addition of
different concentrations of NaCl (1 to 100 mM). The de-
tailed  SERS  measurements  were  indicated  that  the
Ag/Au NPs  with  50  mM  NaCl  concentration  is  the  op-
timal SERS performance. This optimized FP with aggreg-
ated Ag/Au  NPs  were  used  detect  four  adsorbed  mo-

lecules  MB-5  nM,  PA-5  μM,  DNT-1  μM,  and  NTO-10
μM  using  portable  Raman  spectrometer.  The  schematic
of  FP  SERS  preparation  (a)  the  SEM  image  of
FP (b) without and (c) with NPs and the SERS spectra of
explosive molecules (right side) are shown in Fig. 6.

Lin  et  al95.  reported  the  PDMS  assisted  paper  based
SERS platform for the on-site monitoring of food safety.
Firstly,  Au@Ag  nanorods  (NRs)  are  synthesized  using
seed mediated growth, and are deposited on filter paper
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through self-assembly  technique.  Finally,  dual  function-
al SERS platform was made via side of the paper with the
NPs  affixed  onto  PDMS  using  polymethyl  methacrylate
(PMMA)  tape,  as  the  schematic  shows  in Fig. 7(a).  The
SERS platform optimized by Au@Ag NRs with 1 to 6 lay-
ers  were  also  assembled  on  the  filter  paper,  and  SERS
measurements (CV)  demonstrated  that  the  Raman  in-
tensity  of  the  probe  molecule  gradually  decreases  as  the
number  of  layers  increases.  The  optimized  monolayer
SERS  paper-based  PDMS-assisted  platform  was  used  to
detect thiram (0.75 ppm) on the surface of orange by just
simple wiping and the presence of PDMS enables higher
performance  with  better  sensitivity  of  SERS.  Further,
various  concentrations  of  thiram  on  orange  surface
(from 0.5 ppm to 50 ppm) and the concentration versus
intensity Langmuir adsorption for the Raman spectra are
shown in Fig. 7(b). 

Polymer-based SERS substrates
 

Nanofiber mats
Electrospinning  is  a  method  of  translation  of  polymeric
solution/melt (with or without additives) into solid nan-
ofibers  by  applying  the  electric  field1.  The  electrospun
nanofiber films are identical to paper substrates in many

aspects. For example, they have similar flexibility, poros-
ity, and a high surface area. Moreover, their morphology,
thickness,  porosity,  etc.  (of  the  nanofiber  films)  can  be
varied by  judiciously  choosing  the  experimental  para-
meters  (i.e.,  solution  parameters,  process  parameters,
and  ambient  parameters)53,96−98.  The  concentration  of
polymer  solution  being  used  demonstrates  an  essential
role in the electrospun fiber fabrication. At very low con-
centrations of  the  polymer  solution,  electrospraying  oc-
curs  instead  of  electrospinning.  Therefore,  micro/nano-
droplets  are  deposited  on  the  collector  drum.  With  a
slight increase in polymer solution concentration, a mix-
ture  of  microbeads  and  fibers  has  been  observed1.
Smooth nanofibers  are  observed  at  an  appropriate  con-
centration depending on the polymer molecular  weight.
If  the  concentration  is  too  high,  nanofibers  will  not  be
formed,  and  only  micro-ribbons  will  be  observed1.
Therefore,  with  an  increase  in  the  concentration  of  the
polymer solution,  the  obtained  fiber  diameter  will  in-
crease.  Usually,  the  viscosity  and  surface  tension  of  the
solution can be modified by altering the concentration of
the used polymer. At a very low viscosity or surface ten-
sion, continuous and smooth fibers cannot be attained. If
the viscosity of the polymer solution is very high, it  res-
ults in the hard ejection of polymer jet from the syringe
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needle.  The  polymer  molecular  weight  also  affects  the
fiber  morphology  as  a  decrease  in  the  molecular  weight
tends to form more beads rather than smooth fibers. Hu-
sain et al99. analyzed the fiber morphology of PLGA [poly
(lactic-co-glycolic acid)]  in  acetone  with  a  varying  con-
centration between 2 and 25 wt%. At low concentration
(2−4  wt%),  a  mixture  of  particles  and  beads-on  strings
are  observed,  and  at  high  concentration  (20−25  wt%),
only  fibers  are  obtained.  The  fiber  morphology  can  be
tuned with  the  processing  parameters  such  as  the  ap-
plied voltage for the electrostatic force, flow rate, nozzle-
collector distance,  fiber  collector  humidity,  and temper-
ature,  etc.  Recently,  Wan  et  al.100 reported  SiO2 electro-
spun  nanofiber  loaded  with  Ag/Au  nanoparticles  SERS
substrate with high sensitivity –10–11 mol/L, stability – 60
days,  repeatability  for  various  molecules  (S.  aureus,
thiram, 4-MPh, and 4-MPA), and the schematic is illus-
trated in Fig. 8.

The  SERS  performance  of  nanofiber  depends  on  the
properties of

• nanofibers (polymer nature, fiber diameter, the mor-
phology of the nanofibers, and spinning time, etc.) and

• nanoparticles101 (material type, size, shape, composi-
tion, and density), etc.

• Decoration of NPs on the fiber102,103 (within the fiber,
the surface of the fiber, etc.)

• The loading of NPs on the nanofiber mat leads to the
NPs  assembly  with  extremely  small  spacing  providing
scope for abundant hot spots. These play a crucial factor
in SERS response.

Electrospinning  polymer  fibers  can  be  used  as  SERS
substrates  by  loading  plasmonic  NPs;  similar  to  paper

substrates,  several  methods  are  reported  for  embedding
metal NPs  onto  the  electrospun  polymer  films  like  dis-
persion of metal precursor and pre-mixing of metal NPs
into  the  polymer  solution and surface  medications  after
electrospinning.  Chamuah et  al104.  demonstrated the  Au
deposition after  electrospinning  PVA  nanofiber.  Re-
cently, Motamedi et al105. added laser-ablated Au NPs in
Polyvinylidene fluoride  (PVDF)  solution  before  electro-
spinning. Zhang et al106. performed different trials on the
addition  of  Au  nanorods  in  the  PVA  solution  before
electrospinning.  Zhang  et  al107. have  performed  a  de-
tailed  study  on  fabrication  of  electrospun  nanofibrous
surface  decorated  with  Ag  NPs.  Amidoxime  surface-
functionalized  polyacrylonitrile  (ASFPAN)  nanofibrous
membranes surface-decorated  with  Ag  NPs  using  elec-
trospinning  followed  by  the  seed-mediated  electroless
plating. A series of SERS substrates were prepared by al-
tering  the  reaction  time  (1,  2,  3,  4  and  5  minutes)  and
stirring conditions (stirring and non-stirring) during the
electroless  plating  deposition  of  Ag  NPs.  The  change  in
the size,  shape,  and  aggregation  of  Ag  NPs  on  the  sur-
face of  nanofibrous membrane and their  effect  on SERS
efficiency  were  evaluated.  The  best  SERS sensitivity  was
noticed for ASFPAN-Ag NPs nanofibrous membrane at
3 minutes under non-stirring condition, the correspond-
ing  reflectance,  SEM  and  TEM  images  shown  in Fig. 9.
These optimized SERS substrates detect 10 ppb R6G and
4-MBA.

Recently  flexible  polymer-based  (PDMS108,  PMMA109,
PET110, PVDF111,112, etc.) SERS substrates have gained in-
terest  from various  research  groups.  Wang et  al113.  have
synthesized  the  sandwiched  Au@Ag  NPs  [between
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adhesive acrylic polymer tape and polyethene terephthal-
ate  (PET)]  film  using  the  self-assembly  method.  Here,
PET film was used to protect the Au@Ag NPs array from
environment  for  long-term  stability  (60  days).  While
performing the SERS measurements, the protection PET
film was  peeled  off  carefully,  and  the  T/Au@Ag  sub-
strate  was  utilized  for  sensing  CV-1  nM with  a  LOD of
~9×10−10 M.  These  flexible  T/Au@Ag  substrates  were

further  investigated  for  realistic  applications  like  thiram
residues  extracted  from  the  peel  of  apple,  tomato,  and
cucumber.  Zhang  et  al114.  reported  low  cost  large  area
high-throughput  nanostructured  polymer  flexible  SERS
substrate, the schematic shown in Fig. 10(a). These were
prepared in three steps (1) preparation of anodic alumin-
um oxide  (AAO) mold  (2)  formation  of  polymer  nano-
structure  using  roll-to-roll  ultraviolet  (365  nm,
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40  mW/cm2)  nanoimprint  lithography  (R2R  UV-NIL)
technique (3) Au coating on polymer nanostructures by
ion  sputtering.  Here,  the  effect  of  Au  coating  thickness
15,  30,  45,  60  nm  on  SERS  was  investigated  by  varying
the sputtering  durations  of  90,  180,  270,  and  360  s,  re-
spectively.  The  SERS  performance  was  assessed  with
probe molecule R6G and it was noticed 30 nm Au coat-
ing  substrate  shows  the  highest  Raman  signal  with  EF
1.21×107. Subsequently,  the  flexible  effect  on  SERS  un-
der some mechanical deformations was investigated with
different  bending angles  (10°,  45°  and 80°)  and bending
cycles (0, 100 and 200). In the SERS signal intensity and
peak positions plot, there was also no obvious difference
with  the  corresponding  spectra  shown in Fig. 10(b) and
10(c).

Fang  et  al115.  recently  reported  polymer  [polytetra-
fluoroethylene  (PTFE)]  based  flexible  SERS  substrates
fabricated using versatile femtosecond [290 fs, 1030 nm,
200  kHz,  1500  mW]  laser  direct  writing  technique.  3D
patterned polymer  micro-/nano-structures  were  ob-
tained  and  were  subsequently  coated  with  Ag  using
thermal evaporation technique. These flexible SERS sub-
strates were used to detect R6G at a concentration of 10−7

M. The advantages of the fs laser processing were its sim-
plicity, high-speed, and possibility of preparing large area
substrates,  which  leads  to  bulk  sample  preparation  for
practical applications.  Over  the  last  few  years,  our  re-
search  group  at  the  University  of  Hyderabad,  India  has
successfully fabricated a variety of SERS substrates using
fs  laser  ablation of  bulk targets  such as  Au116−118,  Si119,120,
and  Ag121,  and  optimized  them  by  varying  the  various
laser  parameters.  In  future,  we  aim  to  prepare  low-cost
flexible  SERS  substrates  using  fs  laser  pulses  for  easy
sample collection and real-world applications. The nano-
colloids and  nanostructures  obtained  with  fs  laser  abla-
tion  (in  liquids)  technique  are  ubiquitous  and  versatile.
The  recent  developments  in  this  area  of  research  have
proven that these can now be produced in large quantities. 

Textile based SERS substrates
The textile  fabrics  have  also  been  investigated  as  an  at-
tractive  SERS  substrate  (akin  to  paper  and  electrospun
fiber  substrate)  because  the  fabric  is  naturally  strong,
flexible, soft, and a lightweight material. In textiles, vari-
ous materials are available such as cotton, wool, silk, etc..
Comparable  to  other  flexible  substrates,  the  loading  of
NPs can be done in two ways, i.e., in-situ synthesis [soak-
ing in different metal salts] and direct deposition of NPs

[anisotropic  silver  nano-prisms  and  nano-disks  to  wool
fabric has been reported recently122]. Liu et al123. synthes-
ized  silk  fabrics  SERS  substrate  by  soaking  in  HAuCl4
(0.1−0.6 mM, 50 mL) for  30  minutes,  followed by heat-
ing and cleaning. These Au NPs loaded silk fabrics were
used to detect CV, 4-MPy, and PATP. Chen et al124. fab-
ricated  Ag-based  cotton  fabric  by  soaking  in  AgNO3

(50−250  mM)  followed  by  reduce-drying  (30  °C  for  30
min) process.  The  fabric  soaked  in  200  mM  demon-
strated better sensitivity (10−12 M) with 20% reproducib-
ility  and  57  days  stability  in  the  detection  of  p-Amino-
thiophenol. Furthermore, these fabric substrates are hav-
ing  other  applications  UV  protection,  antibacterial,  and
self-cleaning125,126. Gao et al127. reported wash free metal-
lic textile utilization as flexible SERS substrate for the de-
tection  of  fungicide.  They  fabricated  Ag-coated  cotton
fabric using magneton sputtering and the SERS perform-
ance  was  optimized  with  Ag  film  thickness  as  100  nm
from the series of thickness such as 50, 100, 150 and 200
nm on cotton fabric using MB as a probe molecule. The
optimized 100 nm Ag-cotton fabric substrate used to de-
tect  MB  at  a  low  concentration  of  10−12 M,  for  the  real
time usage they detected thiram on 10 ppb. Additionally,
they have shown the reusability of these substrates by al-
ternative usage of MB and MG, this dye droplet was re-
moved by a simple stream of air.  Lu et al128.  synthesized
carbon fiber  cloth  substrate  loaded  with  3D  Ag  nano-
dendrites  by  electrochemical  deposition.  SERS  substrate
preparation was  optimized  by  studying  the  effect  of  de-
position voltage (1.1, 1.2, and 1.3 V) and deposition time
(80, 120,  160,  200,  240  s),  and  the  optimal  SERS  sub-
strate was selected by observing nanodendrites morpho-
logy and SERS efficiency as under a voltage of 1.3 V and
with deposition time of 160 s, shown in Fig. 11. They re-
ported the  detection  of  1  pM CV and  simultaneous  de-
tection of three other molecules (4-MBA –5 ppm, DDTC
–5  ppm,  and  thiram  –5  ppm).  They  presented  the  real
time  detection  data  (SERS  spectra)  of  thiram  (5  ppm)
and MG (5 ppm), respectively, on superhydrophobic Ag-
NDs/carbon  fiber  cloth  substrate.  Further,  they  also
demonstrated the detection of thiram and MG simultan-
eously  in  real  lake  water  using  superhydrophobic  Ag
NDs/carbon fiber cloth substrate. Zhang et al129. recently
reported the synthesis  of  non-woven (NW) fabric  based
SERS  substrate  and  utilized  for  carbaryl  pesticides  trace
detection on fruits  surfaces.  NW@polydopamine (PDA)
@AgNPs  fabrics  SERS  substrates  were  fabricated  by  in-
situ  growth  using  mussel-inspired  PDA  molecules.  The
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schematic  of  the  fabrication  of  flexible  NW@PDA@Ag
NPs  substrate  and  their  utilization  by  simple  swabbing
method  are  illustrated  in Fig. 11(a).  The  substrate  was
optimized  by  monitoring  the  immersion  time  of
NW@PDA fabrics in the [Ag(NH3)2]+ solution. With in-
creasing  the  immersion  time  from  4  hours  to  12  hours,
the  amount  of  Ag NPs on fabric  was  increased,  and the
superior SERS signal  was  noticed  for  12  hours.  The  op-
timized  flexible  NW@PDA@Ag  NPs  substrates  were
subsequently utilized  to  detect  the  sprayed  diluted  car-
baryl  on  the  surfaces  of  apples,  oranges,  and  bananas.
The collected  SERS  spectra  of  carbyl  with  concentra-

tions  ranging  from  mM  to  pM  are  shown  in Fig. 11(b).
This is a rapidly growing area of research and has strong
potential  in  the  preparation  and  utilization  of  flexible
SERS  substrates  for  detection  of  hazardous  materials.
Different plasmonic nanoparticles (sizes, shapes, prepar-
ation  methods,  concentrations  etc.)  need  to  tested  and
methods  optimized  with  these  textiles  before  we  can
think of any practical application.

Table 2 summarizes the  most  important  details  of  re-
cently  reported  flexible  SERS  substrates  including  their
preparation  methods,  materials  used  in  those  studies,
and the sensitivities achieved. Such data is extremely im-
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Fig. 11 | (a) Schematic of flexible non-woven fabric based substrate and the (b) SERS spectra of carbyl on apples, oranges, and bananas sur-
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Table 2 | Summary  of  the  recent  flexible  SERS substrates,  their  preparation  methods,  materials  used,  and  the  sensitivities  achieved
(2014-2021).
 

Flexible substrate
type

Hazardous
material type

studied
Method used SERS active material Molecules investigated - sensitivity Ref.

Paper/Cellulose

Explosives

Inkjet printing
PABT modified-Ag NPs-A4
paper

TNT- pM ref.132

In-situ
Ag NPs in agarose film
supported on filter paper

TNT- 10−8 M ref.78

Immersion Ag nano triangles-filter paper
PA- 10−6 M
p-ATP- 10−8 M

ref.88

Soaking
Aggregated Ag/Au NPs-filter
paper

PA- 5 μM
DNT- 1 μM
NTO- 10 μM

ref.94

Drop casting Star-shaped Au NPs PA-5 μM ref.133

Reduction
Ag Nanostructures- filter paper
Whatman 42

Urea nitrate- 10−6 M
CV- 10−8 M

ref.134

Drugs
Inkjet printing Ag- chromatography paper

Organophosphate malathion
–413 pg, Heroin –9 ng,
Cocaine –15 ng

ref.135

Plasma assisted
chemical deposition

Au-Whatman filter paper
grade 1

Cocaine- 1 ng/ml ref.136

Dyes

In-situ
Ag NPs-polydopamine -Filter
paper

R6g- 10−10 M
MG residue on
Fish scales- 0.04635 pg/cm2,
Crab shells- 0.06952 pg/cm2 and
Shrimp skins- 0.09270 pg/cm2

ref.137

Inkjet-printing

MoO3−x nanosheets on
Chromatographic paper,
printing paper,
filter paper

R6g- 10–7 M
CV- 10–6 M and MG- 10–6 M on fish
surface

ref.74

In-situ Au-filter paper (Advantec #1) MG-damped fish– 10 ppb ref.138

Pesticides

Silver mirror reaction Ag- filter paper Thiram- 10−7 M ref.139

Pen on paper

Au NPs (15–120 nm); Au NRs
(50 nm long, 14 nm thick); Ag
NPs (50-80 nm) –A4 paper,
Filter paper

Thiabendazole < 20 ppb ref.73

Airbrush spray method Ag NPs -glass fibre paper Enoxacin & Enrofloxacin- 10−5 M ref.140

Printing
Au@Ag 30 nm Au core & 7 nm
Ag shell -filter paper

Thiram- 10−9 M ref.141

Screen printing Ag NPs/GO- paper
Thiram 0.26 ng cm−2

Thiabendazole 28 ng cm−2

Methylparathion 7.4 ng cm−2

ref.142

Immersion followed by
APTMS

Ag NPs-PDMS sponge
Triazophos 0.79 ng
Methyl Parathion 1.58 ng

ref.143

Vacuum-assisted
filtration

AuNPs- cellulose nanofiber
Thiram- 1 pM
Tricyclazole- 10 pM

ref.144

In-situ Au NPs-pseudo-paper Thiram- 1.1 ng/cm2 ref.145

Laser techniques Au/Ag film-print paper
Fungicide mancozeb (Dithane DG) and
insecticide thiamethoxam (Aktara 25
BG)

ref.146

Immerson in NaCl
solution for 5 min +dip-
coating

Ag NPs- filter Paper
Melamine- 1 ppm
Thiram- 1 ppm

ref.147
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Table 2 (Continued)

Flexible substrate
type

Hazardous
material type

studied
Method used SERS active material Molecules investigated - sensitivity Ref.

Immersion FP-Au NPs Methyl parathion- 0.011 μg/cm2 ref.148

In-situ Nanocellulose fibers-Ag NPs

Thiram- 0.05 ppm
Thiabendazole- 0.09 ppm,
MG 0.0014 ppm
Enrofloxaci- 0.069 ppm

ref.149

Silicon
rubber mask and a
vacuum filtration

Au NRs -cellulose hydrogels Thiram- 100 fM ref.92

Drop casting
Quartz paper/Cellulose
nanofiber/ mixture (Ag NPs+Au
NSs)

Ferbam on kale leaves (50 μg/kg) ref.150

Vacuum filtration Cellulose nanofibers-Au NPs Thiram- 10−8 M ref.151

Drop casting, inkjet
printing

Au NPs-Whatman 44 FP
Benzenethiol chemical aerosol
Pyridine

ref.152

Vacuum filtration
Glass-fiber filter paper-Ag NWs
coupled with polymerase chain
reaction (PCR)

DNA ref.153

Electrochemical
deposition

Mesoporous Au film@Ag
NWs@cellulose nanofiber paper

R6g - 100 fM
Thiram - 10 fM
2-naphthalenethiol-1 ppb

ref.154

Self-assembling
Cellulose nanofibers -
Ag@DNA/PDA (polydopamine)

Rhodamine 6G.
Thiamethoxamon- 0.003 mg/kg.

ref.155

Cotton buds

Antibiotics In situ reduction
Ag NPs-cellulose nanocrystals-
Filter paper

Phenylethanolamine A-10−9 M
Metronidazole- 10−7 M

ref.93

Explosives Self-assembly & In situ Ag NPs-cotton swab 2,4 DNT- 5 ng ref.156

Pesticides

Soaking, freezing, and
drying

Ag NPs-chitosan foam
Triasophols
Methidathion
Isocrabophos

ref.157

Dipping & drying Ag NPs-cotton swab with NaCl
Thiabendazole (TBZ),
thiram,
TBZ + thiram

ref.158

3D- sponge Explosives In situ Ag NPs -polyurethane sponge
Perchlorates- 0.13 ng
CChlorates- 0.13 ng
Nitrates- 0. 11 ng

ref.159

Nanofiber mat

Pesticides Electrospinning Au coated PVA nanofiber
Deltamethrin- 0.33 mg/kg
Quinalphos- 0.28 mg/kg
Thiacloprid- 0.26 mg/kg

ref.104

CWA simulants Electrospinning Au NPs –PVA nanofiber Methyl salicylate ref.160

Dyes
Electrospinning Ag NPs-PVA nanofiber R6G-10−5 M ref.161

Electrospinning and in-
situ

Ag NPs-Polyimide (PI)
nanofabric

p-Aminothiophenol (p-ATP)- 10−14

mol/L),
ref.162

Fabric Pesticides

Self-assembly/in-situ Ag NPs- non woven fabric
Isocarbophos
Sumicidin
Phosgene

ref.163

Dip coating
Triangular Ag nanoplates-
Cotton fabric

Carbaryl- 10−5 M ref.164

In situ
Polydopamine mediated Ag-Au
NPs – cotton fabric

Carbaryl- 10−6 M ref.165

Magneton sputtering Ag NPs-cotton fabric Thiram - 1 ppm ref.127

Magnetron sputtering Ag-polyester fabric R6G on cucumber, MG and Thiram ref.166
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Table 2 (Continued)

Flexible substrate
type

Hazardous
material type

studied
Method used SERS active material Molecules investigated - sensitivity Ref.

Photochemical
deposition (254 nm)

Ag NPs on TiO2 coated
polyester fiber membranes

Sodium saccharin in soft drinks- 0.3
mg/L, (cola and sprite)

ref.167

In-situ growth Ag NPs-Cotton fabrics PATP-10−8 M ref.168

Vacuum evaporation Ag coated (10 nm) nylon fabrics
PATP-10−9 M
Thiram on cucumber surface-10−7 M

ref.169

Dyes
Vacuum thermal
evaporation and high-
temperature annealing

Ag NPs-carbon fiber cloth R6g- 10−14 mol·L−1 ref.170

Polymers

Explosives

Oriented stacking and in-
situ

Ag and Au–Ag nanoplates- PET
TNT- 10 nM
RDX- 10 nM

ref.171

Self-assembling
Au triangular nanoprisms on
adhesive film (Scotch magic-
tape)

TNT- 900 ppq
RDX- 50 ppq and
PETN- 50 ppq

ref.58

Incubated overnight
followed by thorough
rinsing drying

Au NPs,Au NRs and Au NCs on
elastomeric film (PDMS)

TNT vapor ref.172

Gravure printing Ag NPs-PET DNT vapor ref.173

Sol–gel method and
magnetron sputtering

Ag NPs-Porous silica aerogels NTO- 7.94×10−10 M ref.174

UV lithography and
Au deposition

Ag NPs-Au coated -
nanowrinkled zigzag
micropattern on PDMS layer

TNT- 10−13 mol·L−1

TNT residue(10−9 mol·L−1) on cloth bag
ref.175

Dyes

Electron-beam
evaporation-uniaxial
stretching

Stretched Ag coated poly(ε-
caprolactone) film

MG-green mussel surface- 0.1×10−6 M ref.176

Pyramid Si template
MoS2/AgNPs/inverted pyramidal
PMMA

R6G+MG ref.177

Pyramid Si template GO/Ag NPs/ pyramidal PMMA MG on shrimp ref.178

Ar plasma etching and
Au evaporation

Worm-like Au NSs – PET film R6G-10−9 M ref.179

Self-assembly and in situ
chemical reduction

Raspberry-like polyamide@Ag
hybrid nanoarray film

R6g-10−14 M
Adenosine- 10−9 M

ref.180

Pesticides

Drop-dry method Au NPs (25 nm) - adhesive tape

Parathion-methyl- 2.60 ng/cm2

Thiram 0.24 ng/cm2

Chlorpyrifos 3.51 ng/cm2

on apples, oranges, cucumbers, and
green vegetables surfaces

ref.181

Spin coating and manual
peeling

AgNP@AgNW network-PDMS
Thiram (0.1μM) on a leaf surface and
MG (0.1μM) on a living fish scale

ref.182

Paste and peeling of
self-assembled NPs from
Si

Adhesive acrylic polymer tape
and polyethene terephthalate
(PET) film (T/Au@Ag/PET)

Thiram on apple, tomato, and
cucumber peels (5 ng/cm2)

ref.113

Seed mediated Gold nanobush+PDMS

Thiabendazole (TBZ) on cherry – 0.64
ng/ml
Carbaryl
TBZ+Carbaryl

ref.183

Femtosecond laser
induced plasma assisted
ablation

Ag NPs and Au NPs FEP
(fluorinated
ethylene propylene)

Thiram on apple- 7.96 ng/cm2 ref.184

Drop casting
Ag NS with spikes-adhesive
tape

Phosmet & carbaryl on apple-surface
10−7 M

ref.185
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portant  since  the  developments  are  occurring at  a  rapid
pace  and  it  is  imperative  to  identify  the  strengths  and
weakness  of  each  of  these  methodologies  to  come  up
with  a  viable  and practical  technique  for  making robust
flexible  SERS  substrates.  These  flexible  SERS  substrates
find niche  applications  in  the  detection  of  various  haz-
ardous  materials  in  Defence,  food,  and  environmental
safety issues. Sensitivity estimations are reported in vari-
ous  parameters  such  as  Molar  (M),  parts  per  billion
(ppb),  nanogram (ng),  ng/cm2 and mg/kg.  For example,
in case of Thiram molecule (molecular weight of 240.44)
10 ppb is ~0.42 nM which is equivalent to ~1 pg in 10 μL;
1 ppb = 1 μg/kg; 1 ppm = 1000 ppb. Table 3 represents a
summary  of  the  commercially  available  SERS substrates
(which is not exhaustive) and it is evident that each one
of  them have varied properties  including the sensitivity,
stability, and cost. Liu et al130. provided a comprehensive
evaluation  of  six  commercial  substrates  [Enspectrc-1
(Silicon  based),  Q-SERSTM-1 (Silicon  based),  Ocean  op-
tics-3  (paper  based  Ag,  Au;  glass  based  Ag/Au)  and
Hamamatsu substrate-1  (Au  NS  on  polypropylene)]  in-
cluding their  sensitivity  and  reproducibility  studies  us-
ing the molecules  of  MB,  BPE,  4-MBA. The SERS spec-
tra  recorded  with  XploRA-Plus  Raman  micro-spectro-
meter  at  532  and  785  nm  excitation  wavelengths.  From
the results the authors observed optimized signals in the

case of  Enspectrc  SERS  substrate  for  all  the  three  mo-
lecules  at  532  nm;  Q-SERSTM substrate  for  4-MBA  and
BPE at  785  nm;  Hamamatsu  substrate  for  MB with  785
nm excitation. Hakonen et al131. have reported the SERS-
based detection of forensic substances (Cyclosarin, RDX,
Amphetamine  and  PA)  using  commercially  available
substrates  and  handheld  Raman  spectrometers.  The
same  could  be  extended  to  flexible  substrates  provided
they  are  efficient  (providing  high  enhancements)  for
field applications. Further detailed research is required in
this direction. 

Conclusions and outlook
In recent years the development and applications of flex-
ible SERS substrate  has  received incredible  attention to-
wards the  detection  of  hazardous  materials.  In  this  re-
view, we summarized the most recent research (focusing
particularly on the last 3−4 years of research) on flexible
based SERS  substrates,  including  paper/cellulose,  poly-
mer nanofibers,  3D  sponges,  fabrics,  etc.,  and  their  po-
tential on-site detection of explosives, pesticides, chemic-
al  warfare  agents,  drugs  for  homeland  security,  food
safety,  and  medical  fields.  There  is  a  tremendous  scope
for  the  flexible  SERS substrates  in  the  above-mentioned
fields and many others not listed here. Particularly in the
field of explosive trace detection, these substrates will be

 
Table 3 | A summary of the commercially available SERS substrates, their costs, sensitivities and their stability (non-exhaustive).

 

S. No. Company SERS substrate Sensitivity Stability Cost Ref

1 Stellarnet Cellulose with Au NPs ~106 3 months $199 (pack of 30) ref.186

2 Horiba France SAS
Glass coated with Au nanorods
processed by dynamic oblique
vacuum evaporation

− − − ref.187

3 SERSitive
Electrodeposition of silver and gold
nanoparticles on an ITO glass
surface

~105–106 4 months
5 pcs Ag- €115

5 pcs Ag-Au- €138
ref.188

4 EnSpectr Inc.
Si/Glass passivated with a thin
transparent dielectic layer.

~106
Stable when

unpacked
− ref.189

5 Silmeco
Nanostructured Si deposited with
Gold (Au), Silver (Ag)

− − 5 units €350 ref.190

6 Hamamatsu Au NS on polypropylene −
3 months

when unpacked
− ref.191

7 Integrated Optics Ag/Au coating on silicate glass. − 2 months
Ag- €15
Au- €18

ref.192

8
Mesophotonics. Ltd.

Klarite
Si − −

100 USD for single
2 mm × 2 mm

sample.
ref.193

9 Q SERS TM Au NSs on Si (5 mm × 5 mm) ppb to ppm
6 months (package)
2 weeks (package

opened)
2 units $50 USD ref.194

10 Metrohm Ag, Au based Filter paper − − − ref.195
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highly  beneficial.  For  example,  explosives  trace
swiping/swabbing  from  luggage  surfaces,  clothing,
vehicle  surfaces,  post-blast  sites  will  be  easier  with  such
flexible  substrates.  These  explosive  molecules  are  sticky
and leave behind small  traces while handling and trans-
porting  them  (on  various  surfaces).  Such  traces  can  be
easily detected  using  efficient  SERS  substrates.  Com-
bined with a portable or handheld Raman spectrometers
enriched with  database/libraries  of  all  explosive  mo-
lecules,  it  presents  a  very  attractive  methodology  for
identification and prevention of terrorist activities. Simil-
arly,  testing food materials  with these substrates enables
prevention  of  easy  adulteration  (e.g.,  drinking  water,
milk, edible oils). Although there are several issues (e.g.,
further improvements in the sensitivity, long-term stabil-
ity, reducing the costs) that need to be addressed for each
of these  methods.  But  there  is  also  a  huge  scope  for  re-
search in these areas, and we firmly believe the develop-
ments  in  these  research  areas  will  lead  to  practical
devices.

Additionally, the  recent  developments  in  the  under-
standing  of  SERS  substrates  (both  plasmonic  and  non-
plasmonic)  and  their  potential  have  increased  by  leaps
and bounds, the proof of which is evident from the num-
ber of review articles published in this area196−198.

Different real-world  applications  that  can  be  envis-
aged with these SERS substrates include

(a) Biomedical  applications,  bioimaging  and  bio-
sensing54,199,200;

(b) Inspection in food quality and safety201;
(c) Biochemical and medical analysis198;
(d) Virus detection (including COVID-19)202,203;
(e) Plant disease diagnostics204;
(f) Forensics205.
Since  there  are  numerous  methods  by  which  SERS

substrates  can  be  fabricated206,207,  it  is  imperative  that  a
huge number of  efforts  are out to identify the niche ap-
plication(s) for each one of them. For example, one may
need to compromise on the cost if  we need detection of
femtomolar  concentration  of  desired  analyte  molecule.
Similarly, sensitivity is not an issue in some specific cases
and cost needs to be considered. There are also tremend-
ous advances in the preparation of nanofibrous mats208,209

and combination of  potential  SERS NPs/NSs incorpora-
tion in these mats can lead to development of agile, low-
cost, and  versatile  SERS  substrates  for  various  applica-
tions.
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